
2025/11/04 22:33 1/8 Working with EasyBuild

Computer Documentation Wiki - https://helpdesk.physics.leidenuniv.nl/wiki/

Working with EasyBuild

 EasyBuild is a build and installation framework that facilitates management of (scientific) software.
All GNU/Linux workstations and servers have a variety of softwares available through our EasyBuild
environment. Because EasyBuild is a powerful framework that enables everybody to build and install
complex softwares with ease, we encourage users to use it in their development workflows. Here we
give a few tips should you decide to employ EasyBuild in your private software stack. In no
circumstances the information that follows should replace the official EasyBuild manual.

Common EasyBuild Environments

Our EasyBuild environments and softwares are accessible to any GNU/Linux server and workstation
users according to the following schemas

Where OS Mount Point Remote Location Protocol

Workstations
& Servers

Fedora 31 /easybuild/easybuild/fc31 Software Server NFS
RHEL7 /easybuild/easybuild/el7 Software Server NFS
RHEL7/Lustre /easybuild/easybuild/el7_lustre Software Server NFS
RHEL8 /easybuild/easybuild/el8 Software Server NFS

Xmaris CentOS 7 /marisdata/easybuild Marisdata NFS

These provide a variety of softwares including all EasyBuild command-line tools such as eb via
software modules. A list of available software can be displayed via module spider.

To make EasyBuild's tools available under your environment use

module load EasyBuild

Sometimes, it could be better to have EasyBuild available on a workstation locally and not remotely to
avoid network-related bottlenecks. In this case, a fresh installation of EasyBuild to a local disk can be
performed following these instructions. Pay, however, particular attention to perform the installation
in a disk where there is enough space available and for which you have writing access.

Build and Install Software via EasyBuild

Preliminary Setup and Considerations

First of all you need to setup your EasyBuild development stack. This will be hosted in a location on
your server/workstation for which you have writing access. We first make EasyBuild available under
our environment, then we define the location of our EasyBuild software stack
/path/to/your/easybuild/stack and ultimately we prepend to the MODULEPATH the path in
which our private-software stack modules will be installed. Using the bash syntax

module load EasyBuild

https://easybuild.readthedocs.io/en/latest/
https://easybuild.readthedocs.io/en/latest
https://helpdesk.physics.leidenuniv.nl/wiki/lib/exe/fetch.php?tok=c04b2b&media=https%3A%2F%2Feasybuild.readthedocs.io%2Fen%2Flatest%2F_static%2Feasybuild_logo_alpha.png
https://easybuild.readthedocs.io/en/latest/Installation.html

Last update:
2020/10/05
07:41

easybuild_environment https://helpdesk.physics.leidenuniv.nl/wiki/doku.php?id=easybuild_environment&rev=1601883664

https://helpdesk.physics.leidenuniv.nl/wiki/ Printed on 2025/11/04 22:33

export EASYBUILD_PREFIX=/path/to/your/easybuild/stack

module use $EASYBUILD_PREFIX/modules/all

If you want to use the softwares installed in your private stack on a variety of hardwares
(workstations and servers) you must also instruct EasyBuild to build hardware-independent
executables

export EASYBUILD_OPTARCH=GENERIC

Failing to do so, can result in the production of non-portable softwares. On the other hand, we advise
you build hardware-bound softwares in all cases in which execution performance is paramount.

Put particular attention if you are planning to build OpenBLAS via EasyBuild. In this case defining
EASYBUILD_OPTARCH=GENERIC is not sufficient to produce portable software (CPU independent). Use
both export EASYBUILD_OPTARCH=GENERIC in your setup and –try-
amend=buildopts='TARGET=CORE2 DYNAMIC_ARCH=1 DYNAMIC_OLDER=1 BINARY=64
USE_THREAD=1 USE_OPENMP=1 CC=“$CC” FC=“$F77”' as EasyBuild (eb) runtime option.

If you are building OpenMPI on a cluster whose resources are managed by Slurm and you would like
to use slurm's srun (instead of mpirun or mpiexec) to run parallel applications, then you must
configure OpenMPI to do so via the eb runtime option –try-amend=configopts=“–enable-mpi1-
compatibility –with-slurm –with-pmi=/usr –with-pmi-libdir=/usr/lib64
CPPFLAGS=-I/usr/include/slurm LDFLAGS=-L/usr/lib64 ”. Clearly, adapt this line to the
exact location of the slurm libraries and headers on your cluster.

Build your first software via EasyBuild

Now that you have setup your EasyBuild development environment, you can search the EasyBuild
software repository for softwares you would like to install. Here we search for EasyBuild software
configurations (or easyconfigs) whose name starts with Miniconda

eb -S ^Miniconda
CFGS1=/easybuild/easybuild/fc31/software/EasyBuild/4.1.2/easybuild/easyconfi
gs/m
 * $CFGS1/Miniconda2/Miniconda2-4.3.21.eb
 * $CFGS1/Miniconda2/Miniconda2-4.6.14.eb
 * $CFGS1/Miniconda2/Miniconda2-4.7.10.eb
 * $CFGS1/Miniconda3/Miniconda3-4.4.10.eb
 * $CFGS1/Miniconda3/Miniconda3-4.5.12.eb
 * $CFGS1/Miniconda3/Miniconda3-4.6.14.eb
 * $CFGS1/Miniconda3/Miniconda3-4.7.10.eb

To install Miniconda3-4.7.10 and any needed dependencies (-r option) type

eb -r Miniconda3-4.7.10.eb

The software will be installed in /path/to/your/easybuild/stack/software and its

2025/11/04 22:33 3/8 Working with EasyBuild

Computer Documentation Wiki - https://helpdesk.physics.leidenuniv.nl/wiki/

corresponding module needed to make it available in your environment in
/path/to/your/easybuild/stack/modules/all.

At this point you can use your newly installed Miniconda3 software by sourcing its module via

module load Miniconda3
which conda

Please note that EasyBuild gives its modules names that follow a particular scheme based on the
easyconfigs that generated them. If you are not sure of the module name, you can always consult the
output of module avail miniconda.

Of particular importance are the following EasyBuild eb runtime options, but you are encouraged to
consult eb –help

Option Explanation
–dry-run Print build overview incl. dependencies (full paths) (default: False)
–dry-run-short Print build overview incl. dependencies (short paths) (default: False)

–extended-dry-run Print build environment and (expected) build procedure that will be performed
(default: False)

–rebuild Rebuild software, even if module already exists (don't skip OS dependencies
checks) (default: False)

–robot=PATH[:PATH] Enable dependency resolution, using easyconfigs in specified paths (type
pathsep-separated list; default: EasyBuild installation dir)

–skip Skip existing software (useful for installing additional packages) (default: False)

Build a toolchain via EasyBuild

An EasyBuild toolchain is a set of softwares that consists of one or more compilers and some libraries
that have a specific aim, e.g., for performing parallel computations on an HPC cluster or for using
Graphical Processing Units (GPUs). In oder words, you will be able to install a set of softwares for a
specific functionality with just one command.

List wich toolchains are available via

eb --list-toolchains
List of known toolchains (toolchainname: module[,module...]):
 ClangGCC: Clang, GCC
 CrayCCE: PrgEnv-cray
 CrayGNU: PrgEnv-gnu
 CrayIntel: PrgEnv-intel
 CrayPGI: PrgEnv-pgi
 GCC: GCC
 GCCcore: GCCcore
 GNU: GCC
 PGI: PGI
 cgmpich: Clang, GCC, MPICH
 cgmpolf: BLACS, Clang, FFTW, GCC, MPICH, OpenBLAS, ScaLAPACK
 cgmvapich2: Clang, GCC, MVAPICH2
 cgmvolf: BLACS, Clang, FFTW, GCC, MVAPICH2, OpenBLAS, ScaLAPACK

Last update:
2020/10/05
07:41

easybuild_environment https://helpdesk.physics.leidenuniv.nl/wiki/doku.php?id=easybuild_environment&rev=1601883664

https://helpdesk.physics.leidenuniv.nl/wiki/ Printed on 2025/11/04 22:33

 cgompi: Clang, GCC, OpenMPI
 cgoolf: BLACS, Clang, FFTW, GCC, OpenBLAS, OpenMPI, ScaLAPACK
 foss: BLACS, FFTW, GCC, OpenBLAS, OpenMPI, ScaLAPACK
 fosscuda: BLACS, CUDA, FFTW, GCC, OpenBLAS, OpenMPI, ScaLAPACK
 gcccuda: CUDA, GCC
 gimkl: GCC, imkl, impi
 ...

If you wanted to install the foss (Free and Open Source Software) toolchain first analyse the output
of eb -S ^foss to see which easyconfigs provide you which foss version and then execute for
instance

eb -r foss-2019b.eb

Once the installation process is terminated, you will have BLACS, FFTW, GCC, OpenBLAS,
OpenMPI, ScaLAPACK installed in your software stack.

Build a software for which no easyconfig is available

This is an advanced topic and requires some extra information on how EasyBuild builds and installs a
given software. So far we have seen that it is straightforward to install a software from a given
easyconfig file. But what to do if EasyBuild does not provide in its repos an easyconfig for the
software you would like to install? Read on.

Easyblocks

EasyBuild installations hinge on the concept of easyblocks. An easyblock is a basic unit of installation.
There are easyblocks that performs configure/make/make install or just pip install to build and install
softwares. A complete list of available easyblocks is given by the output of eb –list-easyblocks.
Easyblocks are written in python. For example if you wanted to install a custom software via the
common workflow configure/make/make install you would use the ConfigureMake easyblock.

Easyconfigs

Because easyblocks only offer the basic build and install functionality for a specific software, it is
often needed to customise them according to the installation task in progress. This is done via
easyconfig files. These are python files which inherit the behavior of a specific easyblock and
customise its behaviour via the modification of specific parameters. There are common parameters to
all easyblocks and parameteres that are specific to a particular easyblocks. See here.

Build and install from custom easyconfig

As you might have inferred, in all cases in which EasyBuild does not provide in its repos an easyconfig
for the software you would like to install, you will have to pick up the right easyblock and write an ad-

https://easybuild.readthedocs.io/en/latest/version-specific/generic_easyblocks.html
https://easybuild.readthedocs.io/en/latest/version-specific/generic_easyblocks.html

2025/11/04 22:33 5/8 Working with EasyBuild

Computer Documentation Wiki - https://helpdesk.physics.leidenuniv.nl/wiki/

hoc easyconfig file which uses the chosen easyblock with appropriate parameters. This task is not
simple. To make things more difficult, there could be cases in which you will have to write your own
easyblock from scratch! Here follows an example easyconfig that will install a combo (bundle) of
python packages all available in a single module.

cat Quantum-TensorFlow-2.1.0-foss-2019b-Python-3.7.4.eb
#
easyblock = 'PythonBundle'

name = 'Quantum-TensorFlow'
version = '2.1.0'
versionsuffix = '-Python-%(pyver)s'

homepage = 'https://www.tensorflow.org/'
description = "An open-source software library for Machine Intelligence with
some quantum software"

toolchain = {'name': 'fosscuda', 'version': '2019b'}
toolchainopts = {'usempi': True, 'pic': True}

dependencies = [
 ('Python', '3.7.4'),
 ('TensorFlow', '2.1.0',versionsuffix,('fosscuda','2019b')),
]
exts_default_options = {
 'source_urls': [PYPI_SOURCE],
 'sanity_pip_check': True,
}
use_pip = True

exts_list = [
 ('PubChemPy', '1.0.4', {
 'checksums':
['24e9dc2fc90ab153b2764bf805e510b1410700884faf0510a9e7cf0d61d8ed0e'],
 }),

 ('openfermion', '0.11.0', {
 'checksums':
['2aede7cf2e5f7be4c0016c9b542c27505644f8ecb9411c653dc89a5cd746f84c'],
 }),

 ('cirq', '0.8.0', {
 'source_tmpl': 'cirq-0.8.0-py3-none-any.whl',
 'unpack_sources': False,
 'checksums':
['f424f042ec058cf9e5dd993050bd22b850470019dca57e337a2e3d0a2e416265'],
 }),
]

sanity_check_commands = [
 'python -c "import tensorflow as tf; from openfermion.ops import

Last update:
2020/10/05
07:41

easybuild_environment https://helpdesk.physics.leidenuniv.nl/wiki/doku.php?id=easybuild_environment&rev=1601883664

https://helpdesk.physics.leidenuniv.nl/wiki/ Printed on 2025/11/04 22:33

FermionOperator, QubitOperator"'
]

moduleclass = 'lib'

Apart from the self-explicative instructions given in the file above, note the following

We define a list of build and runtime dependencies via the list dependencies
All python softwares are installed as extensions via pip by means of use_pip
All extensions (python packages) are sourced from PyPi and their details is given in the list
exts_list
The build/install process will succeed only if sanity_check_commands exit without errors

Now install it via

ls my_easyconfigs
Quantum-TensorFlow-2.1.0-foss-2019b-Python-3.7.4.eb
eb -r Quantum-TensorFlow-2.1.0-foss-2019b-Python-3.7.4.eb

Write a custom easyblock

In the unlikely event that no suitable easyblocks fit your software installation procedure, you will have
to implement your own easyblock.

Here follows a trivial – perhaps not very useful – example in which we create an easyblock that
implements the following function: it prints a screen message when its corresponding module is
loaded. This example should get you started and give you an idea of how easyblocks work.

cat anacondaleonardo.py
from easybuild.easyblocks.a.anaconda import EB_Anaconda

class AnacondaLeonardo(EB_Anaconda):

 """Support for building/installing Anaconda and Miniconda."""
 def make_module_extra(self):
 txt = super(AnacondaLeonardo, self).make_module_extra()
 txt += self.module_generator.msg_on_load("Use at your own risk, I
shall assume no responsabilities.")
 return txt

EasyBuild Tips

https://pypi.org/

2025/11/04 22:33 7/8 Working with EasyBuild

Computer Documentation Wiki - https://helpdesk.physics.leidenuniv.nl/wiki/

Read the docs

Always read the official documentation relative to the version you are using. These pages are not
meant to substitute it.

Heterogeneous environments

If you are planning to use your EasyBuild-built software on a variety of CPUs, do not forget to instruct
EasyBuild to do so via export EASYBUILD_OPTARCH=GENERIC and eb … –try-
amend=buildopts='TARGET=CORE2 DYNAMIC_ARCH=1 DYNAMIC_OLDER=1 BINARY=64
USE_THREAD=1 USE_OPENMP=1 CC=“$CC” FC=“$F77”' as EasyBuild (eb) runtime option.

Do you want to know on what hardware you are? gcc -march=native -Q –help=target | awk
'/march/{print $2}'

Learn from examples

Always consult existing EasyBuild recipes and learn from them. grep -ri pythonbundle
/easybuild/easybuild/fc31/software/EasyBuild/*/easybuild/easyconfigs on a
workstation will return a list of easyconfigs from which you can learn all sorts of tricks that concern
the pythonbundle easyblock.

Python extensions

When you install a python package as an extension, EasyBuild checks if the extension is working
properly by python-importing the extension name. This means that for extensions such as PyYAML,
the building process will fail because no module exists named PyYAML. You can overcome the default
behaviour by either giving the extension a custom modulename

 ('PyYAML', '5.3.1', {
 'checksums':
['b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d'],
 'modulename': 'yaml',
 }),

or by skipping it altogether (dangerous)

 ('PyYAML', '5.3.1', {
 'checksums':
['b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d'],
 'modulename': False,
 }),

GPUs

https://easybuild.readthedocs.io/en/latest/index.html

Last update:
2020/10/05
07:41

easybuild_environment https://helpdesk.physics.leidenuniv.nl/wiki/doku.php?id=easybuild_environment&rev=1601883664

https://helpdesk.physics.leidenuniv.nl/wiki/ Printed on 2025/11/04 22:33

If you are building software with GPU support, do so on a workstation/server with GPUs and specify
the CUDA compute capability of the attached GPU(s), for instance eb … –cuda-compute-
capabilities=6.0.

TensorFlow

If you want to customise the https://www.tensorflow.org/TensorFlow building process you must know
that TensorFlow installations occur via Bazel. This means that a whole lot of customisations can take
place at the Bazel level. At building time, Bazel will source $HOME/.bazelrc which you could use to
manipulate the installation at your convenience, for instance

cat ~/.bazelrc
build -c opt
build --cxxopt="-O3"
build --cxxopt="-march=native"
build –cxxopt="D_GLIBCXX_USE_CXX11_ABI=0"
and so on

A common case in which such manipulations are needed is for the installation of TensorFlow Ops. An
Op will work only if it was built in the same way as TensorFlow itself. So sometimes it is necessary to
rebuild TensorFlow or the Op to have a matching building process.

From:
https://helpdesk.physics.leidenuniv.nl/wiki/ - Computer Documentation Wiki

Permanent link:
https://helpdesk.physics.leidenuniv.nl/wiki/doku.php?id=easybuild_environment&rev=1601883664

Last update: 2020/10/05 07:41

https://developer.nvidia.com/cuda-gpus
https://www.tensorflow.org/TensorFlow
https://bazel.build/
https://docs.bazel.build/versions/master/guide.html#bazelrc-the-bazel-configuration-file
https://www.tensorflow.org/guide/create_op
https://helpdesk.physics.leidenuniv.nl/wiki/
https://helpdesk.physics.leidenuniv.nl/wiki/doku.php?id=easybuild_environment&rev=1601883664

	Working with EasyBuild
	Common EasyBuild Environments
	Build and Install Software via EasyBuild
	Preliminary Setup and Considerations
	Build your first software via EasyBuild
	Build a toolchain via EasyBuild
	Build a software for which no easyconfig is available
	Easyblocks
	Easyconfigs
	Build and install from custom easyconfig
	Write a custom easyblock

	EasyBuild Tips
	Read the docs
	Heterogeneous environments
	Learn from examples
	Python extensions
	GPUs
	TensorFlow

