
2026/02/19 12:33 1/4 SSH from within Visual Studio Code

Computer Documentation Wiki - https://helpdesk.strw.leidenuniv.nl/wiki/

SSH from within Visual Studio Code

The Visual Studio Code integrated development environment (IDE) makes it possible to edit program
code locally, and compile and execute it remotely, through a SSH connection.

This is a very useful and powerful feature, but not everything is possible, or easy.

Simple alternative: run VScode on the same system as your
program

Perhaps strange to suggest on a page about the use of ssh in vscode, to first suggest not to use ssh.
But if possible, a local setup is much easier, as you may realize after reading (and trying) the other
setups.

All our desktops, including the vdesk cluster, have a recent version of vscode installed. You can find it
in the menu, or execute the command code from the terminal. Starting from the terminal has the big
advantage that you can setup an environment first, and then everyting you compile or run inside
vscode will be using that environment. Example:

module load AMUSE/2023.5.1
code

this will run the vscode program with the AMUSE environment loaded, so you can directly execute
your AMUSE scripts from vscode.

If you are on a laptop or a remote machine, try one of the methods for remote access eg the vdesk
web interface, or a VNC or X2GO session. In that way you can display everything locally, and yet have
full access to the remote execution environment.

The ssh plugin

So, you read the previous part, and decided to go for ssh from within vscode anyway?

Instructions for installing the vscode ssh plugin can be found here. The page also has information
about setting up a local ssh client, if you don't have one yet (Windows; putty is not supported, you
need the commandline ssh client here, which is already present on Linux and Mac OS)

Next, set up key-based ssh, so you don't have to type a password a couple of times when you open
your remote vscode. Some functionality will not even work with password-based logins anyway. Take
care of the secrecy of your private key. It's called private for a very obvious and very important
reason. If you loose that key or if others get their hand on it, your account is compromised and you
should immediately contact the helpdesk for removing the key and resetting all login related settings.

The vscode documentation has some more tips and tricks that may come in handy.

https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=ssh
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=manuals:virtualdesktopserver
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=remote_access
https://code.visualstudio.com/docs/remote/ssh
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=ssh
https://code.visualstudio.com/docs/remote/troubleshooting

Last update: 2025/01/07 08:36 linux:vscode https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:vscode

https://helpdesk.strw.leidenuniv.nl/wiki/ Printed on 2026/02/19 12:33

Some common pitfalls:

Setup ssh to go directly to your target host. Sterrewacht desktops are directly reachable over
the internet, no setup needed. But if you want to run on a Sterrewacht compute node, the ALICE
cluster or a Institute Lorentz machine, you will need a proxy setup to go through the
appropriate gateway. See SSH tips and tricks, especially example 3 at the bottom.
In the context of vscode, setting up a Proxy is NOT identical to logging in on the gateway, then
loggin in to your target; if you configure vscode to go to the gateway only, vscode's file browser
will be running on the gateway, and vscodes internal server code will be running there too. And
since most ssh gateways are just gateways, and not powerful compute nodes, this will be very
limiting. So do setup that proxy config!!
vscode will automatically install some server code on the target to receive and handle your
connections. This is conveniently done without any user interaction, but inconveniently, this
code ends up in $HOME/.vscode-server and space in the home disk is limited. If this fails,
check your quota, move things around, get rid of the incomplete vscode directory and try again.
What usually works: first log in to your target server, create a directory .vscode-server on a
local disk of that system, and make a symbolic link to that location in your home directory, e.g.

 mkdir /data1/username/.vscode-server
 ln -s /data1/username/.vscode-server $HOME

Creating the .vscode-server directory on a local disk, also avoids the pitfall, that in our
institutes, we have computers running different Linux versions (eg desktops running Fedora,
older compute nodes running RHEL 7 or 8 and newer ones running RHEL 9 or Rocky 9). And
software installed for one of these, might not be compatible with any of the others. And if
.vscode-server is in the shared $HOME directory, all operating systems will be using the same
instance of this code, and might fail in unpredictable ways.

Remote execution environment

Once you have configured the plugin to log in directly to your target system, vscode can compile, run
and debug code there. But it will do so in the default login environment. It is not easy to configure
loading environment modules, conda environments or python venv. If you need such an environment
loaded to run your code, there are a couple of ways that almost get you what you want (but not quite
yet).

Method 1: terminal

This method uses the built-in terminal of vscode, in which you can type any commands you need to
set up an environment.

Open a terminal in your remote vscode window (from the Terminal menu)1.
type the commands to initialize your environment (eg module load AMUSE, or source2.
myenv/bin/activate for venv, etc)
run your code from the commandline3.
some limited commands are also available from the Terminal menu (eg run active file, which4.
works for executable scripts)

https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=ssh:tipsandtricks

2026/02/19 12:33 3/4 SSH from within Visual Studio Code

Computer Documentation Wiki - https://helpdesk.strw.leidenuniv.nl/wiki/

Pro: this works with any environment setup, it also allows use of queing systems on the clusters
Con: you cannot compile, debug and run your code from the menus and buttons in vscode, you have
to use the commandline

Method 2: setup custom interpreter

For python, you can try selecting the interpreter to use.

Open the Command pallete from the View menu (or Ctrl+Shift+P)1.
scroll through or search for Python: Select interpreter2.
select the one you need, or enter the full path3.

Pro: this is said to work for python venvs, perhaps conda envs if the conda env only includes python
code.
Con: it doesn't work if your environment needs anything more than just a python interpreter. Even a
venv that installs commandline utilities as part of its python package setup, will be incomplete (eg
ipython or jupyter will now not be the one from your chosen environment). It is also not possible to
submit jobs to a queuing system like slurm (ALICE, XMARIS).

See also https://code.visualstudio.com/docs/python/environments

Method 3: customizing your login environment

Since the remotely executed commands from vscode run in your default login environment, it sounds
reasonable to modify that environment to accomodate the tasks you want to run. Care has to be
taken that these customizations don't interfere with normal logins (and we cannot stress enough that
selecting a different python, and different versions of common system libraries, will make logging in
on the desktop close to impossible). Also, the customizations should be entirely quiet, since any
output will interfere with scp, and the file explorer of vscode.

So, any customizations should be made in a conditional way (inside an if statement or similar). The
best test we know (so far) is the environment variable VSCODE_SHELL_INTEGRATION so adding
something like this to your .bashrc might do the trick:

if [$?VSCODE_SHELL_INTEGRATION]; then
 module load AMUSE/2023.5.1
fi

Pro: If you get it to work, this setup may be exactly what you need for this specific purpose.
Con: this requires quite some testing, and the setup will be entirely tailored for one specific purpose.
E.g. if you manage to set this up for running AMUSE, and your other project requires running
Tensorflow, you're out of luck and may have to turn to one of the other methods.
Also, this method cannot work in combination with a queuing system, as required on clusters.

Special case: X11 forwarding (graphics)

You need to have a local X11 server running. Default in Linux, but for Mac OS and Windows, you may

https://code.visualstudio.com/docs/python/environments

Last update: 2025/01/07 08:36 linux:vscode https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:vscode

https://helpdesk.strw.leidenuniv.nl/wiki/ Printed on 2026/02/19 12:33

have to install additional components.

(TO DO: does WSL on Windows provide an X server by default??)

In your .ssh/config, add for this host, or in general:

ForwardX11 yes
ForwardX11Trusted yes

Special case: remote jupyter notebooks

VScode has a built-in viewer for jupyter notebooks. In the simplest setup, using the remote explorer to
browse to the location of the notebook, and double-clicking it, will run the notebook and display in a
vscode window.

However, the same issues occur that also plague other jobs: you get no easy way to specify the
execution environment (eg: loading the AMUSE environment in order to run the notebooks from the
AMUSE docs interactive tutorial). And if you load such an environment (the only method that can work
here, is by editing .bashrc), you will also need to add a custom python kernel to jupyter before you
can get the notebook to do anything useful (refer to the web and other docs on jupyter to figure this
out).

See also: https://saturncloud.io/blog/how-to-use-vscode-ssh-remote-to-run-jupyter-notebooks/

From:
https://helpdesk.strw.leidenuniv.nl/wiki/ - Computer Documentation Wiki

Permanent link:
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:vscode

Last update: 2025/01/07 08:36

https://saturncloud.io/blog/how-to-use-vscode-ssh-remote-to-run-jupyter-notebooks/
https://helpdesk.strw.leidenuniv.nl/wiki/
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=linux:vscode

	SSH from within Visual Studio Code
	Simple alternative: run VScode on the same system as your program
	The ssh plugin
	Some common pitfalls:

	Remote execution environment
	Method 1: terminal
	Method 2: setup custom interpreter
	Method 3: customizing your login environment

	Special case: X11 forwarding (graphics)
	Special case: remote jupyter notebooks

