
2026/02/19 12:33 1/9 Working with Python

Computer Documentation Wiki - https://helpdesk.strw.leidenuniv.nl/wiki/

Working with Python

Python is available on all Sterrewacht and Lorentz Institute GNU/Linux workstations. In most cases,
both python v2 and python v3 are available. Please note that python v2 has reached its end-of-life on
01-01-2020 and therefore is no longer actively supported.

Python packages

Many common python packages, such as numpy, scipy, and astropy are available to any users
regardless of the workstation/server. These are installed either locally to the workstation – usually via
the OS package manager – or remotely and exposed to the users by means of the module command.

For local python installations, you can list all installed packages via

python3 -m pip list # or python2 -m pip list

For remote python installations – installations on our software disk – you must first load a python
module and then list all packages in that module

module load Python/3.6.6-foss-2018b
which python
/easybuild/easybuild/fc31/software/Python/3.6.6-foss-2018b/bin/python
python -m pip list

If the package you would like to use is not installed at all you have two options:

Request the installation to the system administrators.
Install it yourself, to one of the directories to which you have writing access.

The two options are described in detail in the sections below.

Request a Python Package Installation

If you believe that the required package could be useful to other researchers in the Observatory or
Lorentz Institute, then you can request its installation via our helpdesk
https://helpdesk.strw.leidenuniv.nl/ (STRW) or https://helpdesk.lorentz.leidenuniv.nl/ (Lorentz) giving
motivations and detailed instructions on where to find the requested package and its license
information. We will notify you when the installation is complete.

Install a Python Package yourself

There are instances in which you would like to install a python package that is not useful to other
researchers in your department and/or you are a developer who wants to try and modify development
versions of installed packages or new packages. In other words, if

https://helpdesk.strw.leidenuniv.nl/
https://helpdesk.lorentz.leidenuniv.nl/

Last update: 2025/04/07 15:07 working_with_python https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=working_with_python

https://helpdesk.strw.leidenuniv.nl/wiki/ Printed on 2026/02/19 12:33

The package is not of interest to the majority of users.1.
You want a custom stash of packages, that is not visible to other users.2.
You want to isolate a set of packages to a specific python application, usually to minimize the3.
possibility of version conflicts.

we advise you follow one of the methods below to install the package yourself. Rest assured though
that we can always assist you during the process.

 The following methods are valid either you use a local (to your workstation/server) python
installation or a python installation provided via the module command. If you choose the latter,
remember to load first an appropriate python module.

METHOD 1: pip with the `--user' option

Python 2.6 introduced the possibility of package installations via a “user scheme”. According to this
scheme, Python distributions support an alternative install location that is specific to a user. Python
provides this functionality via the site module which commands where you, as a user, will be
installing python packages

python -m site --user-base # value of site.USER_BASE
python -m site --user-site # path to your site-packages directory

If the values returned by the command above satisfy you, you can then proceed to install packages in
your user-space

pip install --user SomePackage

In the STRW and IL environments, site.USER_BASE defaults to $HOME/.local. This path can be
customised/updated by modifying the environment variable PYTHONUSERBASE

export PYTHONUSERBASE=/somewhere/I/can/write/to # alternative location
pip install --user SomePackage

will install `SomePackage' in /somewhere/I/can/write/to/lib/python*/site-packages.

When using the `user' scheme to install packages, it is important to note

When globally installed packages are on the python path, and they conflict with the installation
requirements, they are ignored, and not uninstalled.
When globally installed packages are on the python path, and they satisfy the installation
requirements, pip does nothing, and reports that requirement is satisfied.
pip will not perform a –user install in a virtualenv unless the virtualenv was created specifying
–system-site-packages. Nonetheless, pip will never install a package that conflicts with a
package in the virtualenv site-packages.

Method 1 - subsection Incompatible versions

Unfortunately, python's 'user' directory is independent of the operating system version, but most of

2026/02/19 12:33 3/9 Working with Python

Computer Documentation Wiki - https://helpdesk.strw.leidenuniv.nl/wiki/

the compute nodes including VDESK, LOFAR cluster and other compute nodes, run RedHat Enterprise
Linux, which is sufficiently different to cause packages installed on the desktop not to work all the
time.

In cases like this, it might be necessary to create a separate python user directory structure for those
machines:

Add to your .bashrc something like this:

if [! -f /etc/fedora-release]; then
 export PYTHONUSERBASE=$HOME/.local-rhel9
fi

For users of the tcsh shell, add this to your .tcshrc in stead:

if (! -f /etc/fedora-release) then
 setenv PYTHONUSERBASE $HOME/.local-rhel9
endif

And make sure to create that directory ~/.local-rhel9. Now the pip –user commands on RHEL9
machines will install into that newly created directory in stead of the default one used by the desktop
systems.

METHOD 2: venv

venv is a tool that creates isolated Python environments; it replaces the obsolete virtualenv that
provided similar functionality for python 2.x. A python environment is essentially a folder which
contains copies of all necessary files needed for a Python project to run. In addition each virtual
environment will contain a copy of the utility pip to manage packages. For example, let us suppose
you would like to install pymatlab which is not installed on the departmental workstations, then you
could do

$ mkdir /data2/username/venvs
$ python3 -m venv /data2/username/venvs/pymatlab

to create a virtual environment (folder) called pymatlab (note that this example explicitly creates this
in a directory on your local /data2 disk, in order to avoid running out of disk quota in your home
directory, which can easily happen since venvs can become rather big).

In the example, we use python3 as the python for this environment; if there are multiple python
versions on the system, and you want to base your venv on a specific version, use that version to
create the venv, e.g. python3.12 -m venv /data2/username/venvs/pymatlab.

The last step before starting to use the newly generated environment is to activate it, that is to
prepend its /bin folder to your $PATH environment variable. This is done by issuing

source /data2/username/pymatlab/bin/activate # bash shells
source /data2/username/pymatlab/bin/activate.csh # c shells

To acknowledge the activation of pymatlab, the terminal prompt will be changed to

Last update: 2025/04/07 15:07 working_with_python https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=working_with_python

https://helpdesk.strw.leidenuniv.nl/wiki/ Printed on 2026/02/19 12:33

(pymatlab)username@hostname:~/python_virt_envs/pymatlab$

to emphasize that you are operating in a virtual environment. To install pymatlab (or any other
package) locally (in your virtual environment) run pip within that environment

pip install pymatlab

Your virtual environment now should have the same core python packages defined globally for all the
Observatory or Lorentz Institute users plus any packages installed in the virtual environment. Note
that you do NOT use –user on the pip command in this case, since that would install in your
$PYTHONUSERBASE directory (see above) instead of the venv!!

In any cases, it is advisable you keep a backup of your virtual environment configuration by creating a
list of installed packages

pip freeze > packages.dat

This can help collaborators and fellow developers to reproduce your environment with

pip install -r packages.dat

When you are done working in a virtual environment deactivate it running

deactivate

At any time, any virtual environment can be destroyed by removing the corresponding folder from the
file system so do not panic if things do not work, just delete your virtual environment and start all
over again.

Note: System administrators will not be responsible and/or manage users virtual environments. You
are strongly advised you consult the documentation.

METHOD 2: OBSOLETE: virtualenv (python 2.x)

This guide refers to virtualenv version 12.0.7.

virtualenv is a tool that creates isolated Python environments. A python environment is essentially a
folder which contains copies of all necessary files needed for a Python project to run. In addition each
virtual environment will contain a copy of the utility pip to manage packages. For example, let us
suppose you would like to install pymatlab which is not installed on the departmental workstations,
then you could do

$ mkdir python_virt_envs && cd python_virt_envs
$ virtualenv --system-site-packages pymatlab

to create a virtual environment (folder) called pymatlab.

Python virtual environments containing specific versions of python can be created using the -p option
as in virtualenv -p /usr/bin/python3.6.

2026/02/19 12:33 5/9 Working with Python

Computer Documentation Wiki - https://helpdesk.strw.leidenuniv.nl/wiki/

The last step before starting to use the newly generated environment is to activate it, that is to
prepend its /bin folder to your $PATH environment variable. This is done by issuing

source pymatlab/bin/activate # bash shells
source pymatlab/bin/activate.csh # c shells

To acknowledge the activation of pymatlab, virtualenv will change the terminal prompt $PS1 to

(pymatlab)username@hostname:~/python_virt_envs/pymatlab$

to emphasize that you are operating in a virtual environment. To install pymatlab (or any other
package) locally (in your virtual environment) run pip within that environment

pip install pymatlab

Your virtual environment now should have the same core python packages defined globally for all the
Observatory or Lorentz Institute users plus any packages installed in the virtual environment.

In any cases, it is advisable you keep a backup of your virtual environment configuration by creating a
list of installed packages

pip freeze > packages.dat

This can help collaborators and fellow developers to reproduce your environment with

pip install -r packages.dat

When you are done working in a virtual environment deactivate it running

deactivate

At any time, any virtual environment can be destroyed by removing the corresponding folder from the
file system by executing

rm -rf ~/python_virt_envs/pymatlab

so do not panic if things do not work, just delete your virtual environment and start all over again.

Note: System administrators will not be responsible and/or manage users virtual environments. You
are strongly advised you consult the documentation

virtualenv --help

METHOD 3: easy_install with the `--user' option

Easy Install is a python module (easy_install) that lets you automatically download, build, install, and
manage Python packages. By default, easy_install installs python packages into Python's main site-
packages directory, and manages them using a custom .pth file in that same directory. Very often
though, a user or developer wants easy_install to install and manage python packages in an

Last update: 2025/04/07 15:07 working_with_python https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=working_with_python

https://helpdesk.strw.leidenuniv.nl/wiki/ Printed on 2026/02/19 12:33

alternative location. This possible via the –user option in a similar fashion to pip's

easy_install -N --user pymatlab

This will install pymatlab in ${HOME}/.local/ ready to be imported in your next python session. If
you want to install your package in a different location than $HOME/.local, then set the
environment variable $PYTHONUSERBASE to a custom location, e.g,

export PYTHONUSERBASE=/home/user/some/where/I/can/write # alternative
location

Please consult the docs to know more:

python -m easy_install --help

Migrating packages between python versions

Another issue when using personal installs may arrise on operating system upgrades, when a newer
version of python is made the default (eg, moving from python 3.7 to python 3.9). Notes copied from
the Fedora release notes:

Make a list of installed packages in the old python version:1.

 python3.7 -m pip freeze > installed.txt

Reinstall for the current python version:1.

 python3.9 -m pip install --user -r installed.txt

Optionally, uninstall the packages from the old python version and/or remove the obsolete1.
directory under $HOME/.local/lib/python3.7

Example: how to let python search arbitrary library paths

For instance for python v2.7 installations, create or edit

$HOME/.local/lib/python2.7/site-packages/my-super-library.pth

by appending the path of your choice

echo "/my/home/sweet/home/library" >> $HOME/.local/lib/python2.7/site-
packages/my-super-library.pth

All .pth files will be sourced by python provided they are in the right location.

https://docs.fedoraproject.org/en-US/fedora/f33/release-notes/developers/Development_Python/#_notes_on_migrating_user_installed_pip_packages

2026/02/19 12:33 7/9 Working with Python

Computer Documentation Wiki - https://helpdesk.strw.leidenuniv.nl/wiki/

Example: how to create your own python environment
module

Please read here.

Example: numpy with openBLAS

In this example we create a python2 virtual environment in which we will install the latest version of
numpy that will use the openBLAS library.

 The procedure and paths below will work on any maris node.

virtualenv py2_numpy_openBLAS
source py2_numpy_openBLAS/bin/activate
cd py2_numpy_openBLAS
mkdir numpy
pip install -d numpy numpy && cd numpy
tar xzf numpy-X.Y.z.tar.gz
cd numpy-X.Y.Z/
cp site.cfg.example site.cfg

Edit site.cfg with your favorite editor such that

[openblas]
libraries = openblas
library_dirs = /usr/lib64
include_dirs = /usr/include/openblas/
runtime_library_dirs = /usr/lib64

then install numpy

python setup.py install

If the installation is going smoothly you should see

....

openblas_info:
 FOUND:
 libraries = ['openblas', 'openblas']
 library_dirs = ['/usr/lib64']
 language = c
 define_macros = [('HAVE_CBLAS', None)]
 runtime_library_dirs = ['/usr/lib64']

....

https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=easybuild_environment

Last update: 2025/04/07 15:07 working_with_python https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=working_with_python

https://helpdesk.strw.leidenuniv.nl/wiki/ Printed on 2026/02/19 12:33

Installed /some/where/py2_numpy_openBLAS/lib/python2.7/site-packages/numpy-
X.Y.Z-py2.7-linux-x86_64.egg

Now that numpy is installed you could also install scipy, for instance

pip install scipy

openBLAS will automatically use multithreading on the basis of the computer resources and the
executable. If you wanted more control on multithreading you could either build openBLAS from
source by specifying the number of threads or specify the number of threads in your application. If
none of the above methods satisfies you, then it is possible to set the environment variable
OPENBLAS_NUM_THREADS.

 Be careful! Choose the number of threads with care or your application will run slower than a
single-threaded one!

 If your application is parallelized please build OpenBLAS with USE_OPENMP=1.

 If your application is already multi-threaded, it will conflict with OpenBLAS multi-threading. You
must

export OPENBLAS_NUM_THREADS=1 in the environment variables. Or
Call openblas_set_num_threads(1) in the application on runtime. Or
Build OpenBLAS single thread version, e.g. make USE_THREAD=0

In any cases, please READ the docs.

Bypassing the existing python environment

Occasionally, something in the systemwide directories (e.g
/software/local/lib64/python2.7/site-packages) interferes with your python application.
Perhaps you have a code that requires a specific, older, version of numpy or matplotlib. Just installing
that version is not always sufficient. The trick is, to set the PYTHONPATH to point first to a directory
where you place a private sitecustomize.py which then overrides the one we have placed in
/usr/lib64/python2.7/site-packages (which is where we add the /software directories to the path for
everyone). Here is how:

 mkdir /some/location/python_custom_dir
 setenv PYTHONPATH
/some/location/python_custom_dir:/usr/lib64/python2.7/site-packages

The sitecustomize.py could be something like this:

 import sys

https://github.com/xianyi/OpenBLAS/wiki/Document]

2026/02/19 12:33 9/9 Working with Python

Computer Documentation Wiki - https://helpdesk.strw.leidenuniv.nl/wiki/

 import site
 mypath='/usr/lib64/python%s/site-packages' % sys.version[:3]
 # We want this directory at the start of the path, to enforce the original
defaults
 sys.path.insert(1,mypath)
 # In order to find also eggs and subdirectories, addsitedir seems
necessary:
 site.addsitedir(mypath, known_paths=None)

Anaconda/Miniconda

Another way of using a private python install (separate versions etc), is to install and use
Anaconda/Miniconda. Since these environments can encompass much more than just python, they
deserve their own page (especially since they come with their own share of pitfalls).

Jupyter Notebooks

Depending on your operating system (Fedora or RedHat) you might get a different python kernel
version as the standard kernel. If you get python2 as the default kernel and only option, but wish the
use the python3 kernel you need to add this kernel to you local environment. This can be done by
executing:

 python3 -m ipykernel install --user

Once this command has run successfully, it will have installed python3 as a jupyter kernel.

After starting jupyter notebook you can select python3 as kernel.

If you need to work with several python setups (e.g. the system python3, but also from loaded
environment modules), it is easy to assign a name to the generated kernel, e.g:

 python3 -m ipykernel install --user --name system-python3

From:
https://helpdesk.strw.leidenuniv.nl/wiki/ - Computer Documentation Wiki

Permanent link:
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=working_with_python

Last update: 2025/04/07 15:07

https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=conda
https://helpdesk.strw.leidenuniv.nl/wiki/
https://helpdesk.strw.leidenuniv.nl/wiki/doku.php?id=working_with_python

	Working with Python
	Python packages
	Request a Python Package Installation
	Install a Python Package yourself
	METHOD 1: pip with the `--user' option
	Method 1 - subsection Incompatible versions

	METHOD 2: venv
	METHOD 2: OBSOLETE: virtualenv (python 2.x)
	METHOD 3: easy_install with the `--user' option
	Migrating packages between python versions

	Example: how to let python search arbitrary library paths
	Example: how to create your own python environment module
	Example: numpy with openBLAS

	Bypassing the existing python environment
	Anaconda/Miniconda
	Jupyter Notebooks

